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Abstract
The involvement of tau phosphorylation in apoptosis resembling Alzheimer’s disease (AD) was investigated using a cell model
of P19 cells stably expressing human tau441 (tau/P19 cells). Apoptotic cell death was observed specifically in tau/P19 cells
during neural differentiation with retinoic acid (RA) treatment. A CaM kinase II inhibitor, KN-93, protected tau/P19
cells from apoptosis, although it stimulated the cell death of wild-type P19 cells (wt/P19 cells). W-7 and calmidazolium,
calmodulin antagonists, also specifically inhibited the apoptosis of tau/P19 cells. LiCl, an inhibitor of glycogen synthase 3, a
tau kinase, was effective in protecting tau/P19 cells from apoptosis, but the protective effect was less than that of CaM kinase II
inhibitor and calmodulin antagonists. Tau in the nuclei of tau/P19 cells was phosphorylated at the sites for CaM kinase
II detected by an antibody recognizing a phosphorylated form of tau. These results indicated that CaM kinase II was involved
in the apoptosis of tau/P19 cells induced by RA treatment.

Keywords: Ca2þ /calmodulin-dependent protein kinase II (CaM kinase II, CaMKII), tau, phosphorylation, apoptosis,
P19 cells, neural differentiation, Alzheimer’s disease

Introduction

Alzheimer’s disease (AD), a progressive neurodegene-

rative disorder, is characterized by two hallmark lesions:

amyloid plaques and neurofibrillary tangles (NFTs).

The core peptide of amyloid plaques is Amyloid-b (Ab),

which is processed from the amyloid precursor protein

(APP), and NFTs are composed of tau in a hyper-

phosphorylated state (NFT-tau) relative to normal tau

in the adult brain. Hyperphosphorylation of tau is a

crucial step in the development of NFTs and one of the

earliest signs of neuronal degeneration [1–3]. Tau is a

family of proteins that modulates the dynamics of

microtubules, and is an important component of the

neuronal cytoskeleton. The relationship between the

phosphorylation of tau and neuronal cell death in

AD can be addressed using cell models where tau

is overexpressed. A good correlation between the

amount of hyperphosphorylated tau and the clinical

severityofADpatientshas been demonstrated [4]. Ithas

been reported that a MEK inhibitor prevents fibrillar

b-amyloid-induced tau phosphorylation and degenera-

tion in cultured hippocampal neurons [5]. Pseudo-

hyperphosphorylation of tau induces apoptotic cell

death in cultured cortical neurons [6], and in organo-

typic hippocampal slices [7]. Site-specific phos-

phorylation of tau is regulated by concerted and

sequential actions of many protein kinases and protein

phosphatases [3,8].

In studies of AD pathogenesis, it is important to

understand the kinase(s) involved in enhanced tau

phosphorylation and neuronal cell death. Tau protein

can be phosphorylated in vitro at many specific sites
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of NFT-tau by tau kinases such as glycogen synthase

kinase 3 (GSK3) and cyclin-dependent protein kinase 5

(CDK5) [9,10] as well as second messenger-dependent

protein kinases such as cyclic AMP-dependent protein

kinase (PKA) [11], Ca2þ /calmodulin-dependent pro-

tein kinase II (CaM kinase II) [12,13] and protein kinase

C (PKC) [14]. We have established P19 and NG108-15

cell lines that allow the stable expression of human tau

[15–17], and demonstrated that P19 cells stably

expressing human tau441 (tau/P19 cells) specifically

undergo extensive apoptosis during neural differen-

tiation with retinoic acid (RA) treatment [16]. In the

present study, we demonstrated, using CaM kinase II

inhibitor, a calmodulin antagonist, and an antibody

against phosphorylated tau at the site of CaM kinase II,

that CaM kinase II is involved in the apoptosis of

tau/P19 cells induced by RA treatment.

Materials and methods

Materials

Mouse embryonal carcinoma cell line P19 cells

overexpressing human tau441 (tau/P19 cells) was

established previously [16,17]. Human tau441

(hTau441) is the longest central nervous system

isoform of tau among splice forms. hTau441 was

purified as described previously [13]. Monoclonal

anti-tau antibody 12E8 recognizing phosphorylated

Ser262 and Ser356 in hTau441 [18] was provided by

Dr. Peter Seubert, Elan Pharmaceutical Inc. (South

San Francisco, U.S.A). Polyclonal anti-tau antibody

clone H-150 recognizing total tau was purchased from

Santa Cruz Biotech. Inc. (Santa Cruz, U.S.A.).

Indirubin-30-monoxime was purchased from Merck

Ltd. Japan (Tokyo, Japan). KN-93, W-7, calmida-

zolium, and LiCl were purchased from Wako Pure

Chemical Industries, Ltd. (Osaka, Japan). Enhanced

chemiluminescence reagents for immunoblotting were

from PerkinElmer Life Sci. (Boston, USA).

Cell culture and analysis

P19 cells (wt/P19 and tau/P19 cells) were cultured and

induced to differentiate with RA treatment as

described previously [16,17]. When the effect of

various inhibitors on cell viability was examined, these

reagents were added to culture medium simul-

taneously with RA. Cells were cultured in the presence

of RA alone or both inhibitor and RA for the indicated

period. RA was dissolved in ethanol, and W-7,

calmidazolium and indirubin-30-monoxime were dis-

solved in dimethyl sulfoxide (DMSO). The final

concentration of ethanol and DMSO was less than

0.5% in the culture medium. DMSO and ethanol were

added at the same concentrations in control exper-

iments. KN-93 and LiCl were dissolved in water and

added to the culture medium. Cell viability was assayed

by trypan blue exclusion, and expressed as a percent of

living cells at indicated times. Cytosolic and nuclear

fractions of cells were isolated as described previously

[16]. Immunoblot analysis was carried out as described

previously [16]. Briefly, proteins were separated by

SDS-PAGE and electrophoretically transferred to a

nitrocellulose membrane. The membrane was blocked

with 5% non-fat dry skim milk, and then incubated

with anti-tau antibody H-150 (diluted 1:500) or anti-

phosphorylated tau antibody12E8 (1:500) overnight

at 48C. After washing, the membrane was incubated

with horseradish peroxidase-coupled anti-mouse or

anti-rabbit IgG antibody (diluted 1: 2000). Immuno-

reactive bands were detected using an enhanced

chemiluminescence technique.

Results

KN-93 specifically protects apoptosis of tau/P19 cells

We previously demonstrated that tau/P19 cells

specifically underwent extensive apoptosis during

neural differentiation with RA treatment [16].

Apoptosis was demonstrated by caspase-3 activation,

DNA fragmentation, and chromatin condensation.

In the present study, we investigated the involvement

of CaM kinase II in the apoptosis of tau/P19 cells

induced by RA. The viabilities of tau/P19 and wt/P19

cells were compared during neural differentiation with

RA treatment (Figure 1(A)). The viability of tau/P19

cells was greatly reduced with RA treatment, whereas

that of wt/P19 cells was gradually reduced

(Figure 1(A), left panel). The tau/P19 cells abundantly

underwent cell death in the early period of RA

treatment; the cell viability was about 40% and 30% at

24 and 48 h, respectively, during neural differentiation

induced by RA treatment. KN-93, a selective inhibitor

of CaM kinase II, increased the viability of tau/P19

cells about 1.7- and 2.1-fold at 24 and 48 h,

respectively, as compared with that in its absence.

The viability of wt/P19 cells was about 80% and 55%

at 24 and 48 h, respectively, during neural differen-

tiation with RA treatment. KN-93 reduced the

viability of wt/P19 cells to about 50% and 30% at 24

and 48 h, respectively, during the neural differen-

tiation with RA treatment (Figure 1(A), right panel).

The effect of KN-93 concentrations on cell viability

was examined (Figure 1(B)). Optimum concentration

of KN-93 to inhibit the apoptosis of tau/P19 cells was

5-10mM. At 2mM, KN-93 did not show any protective

effect against the apoptosis of tau/P19 cells, although it

stimulated the apoptosis of wt/P19 cells. These results

showed that KN-93 inhibited normal differentiation

and stimulated apoptosis of wt/P19 cells, but protected

tau/P19 cells from apoptosis, suggesting that CaM

kinase II was required for the survival of differentiating

wt/P19 cells, but participated in apoptosis of tau/P19

cells via excessive tau phosphorylation.
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Calmodulin antagonists specifically protect apoptosis

of tau/P19 cells

To confirm that the apoptosis of tau/P19 cells was

mediated by calmodulin and the CaM kinase II

pathway, the effect of calmodulin antagonists was

examined, as shown (Figure 2(A)). W-7 and

calmidazolium inhibited the apoptosis of tau/P19

cells and increased cell viability about 1.9- and 1.8-

fold, respectively, as compared with that in the

absence of the inhibitors. W-7 and calmidazolium

did not inhibit, but slightly stimulated the apoptosis

of wt/P19 cells. These results indicated that the

CaM kinase II pathway was specifically involved

in the apoptosis of tau/P19 cells induced by RA

treatment.

The effect of inhibitors of tau kinases, such as

GSK3 and CDK5, was also examined (Figure 2(A)).

LiCl, an inhibitor of GSK3, increased the viability of

tau/P19 cells 1.25-fold, but stimulated the apoptosis

of wt/P19 cells. The protective effect of LiCl on

apoptosis of tau/P19 cells was weaker than that of

CaM kinase II inhibitor and calmodulin antagonists.

Indirubin-30-monoxime, an inhibitor of CDK5,

greatly stimulated the apoptosis of both wt/P19

and tau/P19 cells, indicating that CDK5 played

an important role in the survival of cells under neural

differentiation with RA treatment.

Nuclear tau is phosphorylated at CaM kinase II site(s)

KN-93 and calmodulin antagonists are known to

inhibit calmodulin-dependent protein kinases and

calmodulin pathway including CaM kinase I, II and

IV. To confirm the involvement of CaM kinase II in

the apoptosis of tau/P19 cells, we next investigated the

phosphorylation of tau at the site of CaM kinase II

using anti-tau antibody 12E8 (Figure 2(B)). Tau in

the cytosol and nuclei of tau/P19 cells detected by

H-150 antibody showed several bands around 60 kDa

depending on the phosphorylation states, and some

degradation products were also detected around

50 kDa or smaller. Tau in the nuclei of tau/P19 cells,

as detected by 12E8 antibody, was the phosphorylated

form with a molecular mass of about 60 kDa and its

degradation product of about 50 kDa, indicating that

nuclear tau was phosphorylated at Ser262 and/or

Ser356. Cytosolic tau did not react with 12E8

antibody, indicating that it was not phosphorylated

at these sites. Significant bands were not detected in

wt/P19 cells with H-150 and 12E8 antibodies. These

results indicted that tau in the nuclei of tau/P19 cells

was phosphorylated at CaM kinase II site(s) before

RA treatment.

Discussion

In studies of AD pathogenesis, the underlying

molecular mechanisms responsible for cell death are

unsolved. The concept of apoptosis in AD was initially

demonstrated by Cotman’s group that synthetic Ab

peptides trigger the degeneration of cultured neurons

through activation of an apoptotic pathway [19].

Postmortem analysis of the human brain has also

shown apoptotic DNA fragmentation [20]. In an

animal model of AD, the toxicity of tau is required in

its mutation in some inherited diseases, such as

familial frontotemporal dementia and parkinsonism

linked to chromosome 17 (FTDP-17). The P301L

mutation of human tau is the most common mutation

linked to FTDP-17 and is pathologically characterized

by the presence of NFTs and neuronal loss in the

forebrain [21]. The overexpression of P301L

mutation of human tau in transgenic mice leads to

increased tau phosphorylation [22]. The main

cytotoxic effects of tau are not exerted by NFTs but

by lower molecular mass aggregates of tau in P301L

mutant mice [23]. Cytoplasmic c-jun N-terminal

kinase (JNK) activation may also play an important

role in the abnormal tau hyperphosphorylation

associated with R406W tau mutation and in AD

[24]. This mutation also causes AD-like dementia and

tauopathy in humans. On the other hand, an animal

model of AD expressing human mutated tau protein

Figure 1. Effect of KN-93 on the apoptosis induced during neural

differentiation with RA treatment. (A), Time course of apoptosis in

the presence or absence of KN-93. Tau/P19 or wt/P19 cells were

differentiated with treatment with 0.3 mM RA in the absence (left

panel) or presence (right panel) of 5mM KN-93. RA and KN-93 were

added to the culture medium at 0 time, and cell viability was

determined at the indicated times. (B), Effect of the concentration

of differentiated cells with treatment with 0.3mM RA in the

presence or absence of the indicated amounts of KN-93 at

24 h (left panel) and 48 h (right panel) after induction of

differentiation. Cell viability was determined at the indicated

concentrations of KN-93.
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provides evidence for nonapoptotic neurodegenera-

tion [25]. Some AD characterized by tau hyper-

phosphorylation and neurodegeneration are directly

attributable to mutations in the tau gene, whereas in

others, tau hyperphosphorylation occurs in the

absence of tau mutations in this study [26]; therefore,

we used tau/P19 cells as a cell model to investigate

apoptosis related to tau expression. P19 is a widely

used embryonic stem cell line and a well-documented

system for the analysis of neural differentiation: RA

induces P19 cells to differentiate into neurons [27].

Previously, we demonstrated the involvement of

CaM kinase II in neuronal differentiation of P19 cells

induced by RA treatment [28]. In the present study,

we demonstrated, using CaM kinase II inhibitor, a

calmodulin antagonist, and an antibody against phos-

phorylated tau at the site of CaM kinase II, that the

calmodulin pathway through CaM kinase II is involved

in the apoptosis of tau/P19 cells induced during neural

differentiation with RA treatment (Figures 1 and 2).

Under experimental conditions, KN-93 and calmo-

dulin antagonists protected the apoptosis of tau/P19

cells, but stimulated that of wt/P19 cells (Figure 2(A)).

Neuronal CaM kinase II is one of the most

abundant protein kinases in the brain and phosphory-

lates a broad range of brain proteins to regulate

important neuronal functions [29]. One of its major

substrates is cytoskeletal protein, including tubulin,

microtubule-associated protein 2 (MAP2) and tau.

Among abnormal phosphorylation sites of NFTs,

4 sites, such as Thr212, Ser214, Ser262, and Ser356, were

phosphorylated by CaM kinase II (Figure 3(A)) [13].

Some protein kinases other than CaM kinase II

phosphorylate these sites, such as Thr212, which is

phosphorylated by GSK3 and MAPK, Ser214 by PKA

and PKC, Ser262 by GSK3, p110K, PKA, and PKC,

and Ser356 by GSK3, PKA and p110K [9–11,14,

30–32]; however, only CaM kinase II can phos-

phorylate all four sites. If CaM kinase II had been

abnormally activated, due to a breakdown of the

normal regulatory mechanisms, it would be respon-

sible for the phosphorylation of tau at NFT sites.

Ser262 and Ser356 residues are present at tubulin-

binding sites, and the phosphorylation of tau at these

sites reduces the ability of tau to bind MTs and to

promote their assembly [33,34].

Figure 2. Effect of calmodulin antagonists or tau kinase inhibitors on apoptosis, and phosphorylation of nuclear tau at CaM kinase II site(s).

(A), Effect of calmodulin antagonists or tau kinase inhibitors on the apoptosis during neural differentiation induced by RA treatment. Tau/P19

or wt/P19 cells were differentiated with treatment with 0.3 mM RA in the presence or absence of 10 mM W-7, 10mM calmidazolium, 5 mM

LiCl, and 50 nM indirubin-30-monoxime. Cell viability was measured at 24 h after induction of differentiation. left panel, tau/P19 cells; right

panel, wt/P19 cells. Abbreviations: C, control in the absence of inhibitors; Calmi, calmidazolium; Indi, Indirubin-30-monoxime.

(B), Immunoblot analysis of phosphorylation of nuclear tau at CaM kinase II site(s). Cytosolic and nuclear fractions of tau/P19 cells without

RA treatment were subjected to immunoblot analysis. Each lane was applied with 50mg of protein. Lane Tau441 was applied with purified

hTau441 (100 ng). Tau was detected with H-150 antibody recognizing total tau and with 12E8 antibody recognizing phosphorylated Ser262

and Ser365. Upper panel, tau/P19 cells; lower panel, wt/P19 cells; left panel, H-150 antibody (H-150 Ab); right panel, 12E8 antibody (12E8 Ab).

Abbreviations: Cyt, cytosolic fraction; Nuc, nuclear fraction.
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In tau/P19 cells, tau is distributed throughout

the cytoplasm and is co-localized with microtubules,

but some tau is localized inside nuclei separated

from MTs [16]. Some tau dissociated from MTs

is phosphorylated by protein kinases, including

CaM kinase II and GSK3, and then translocated

into the nucleus (Figure 2). Nuclear tau may disrupt

RA signaling during neural differentiation, resulting in

apoptosis. It has been reported that RA signaling

stimulates the expression of TrkB, and regulates

neurogenesis in neural stem cells, suggesting that

it may promote cell survival [35]. RA signaling

may be disrupted by increased nuclear tau, resulting

in the reduction of TrkB followed by cell death.

CaM kinase II may be involved in the apoptosis of

tau/P19 cells during neural differentiation with RA

treatment.

In the AD brain, the concentration of tau is elevated,

and hyperphosphorylated tau polymerizes into NFTs,

[36]; however, several lines of evidence indicate that

aberrant tau phosphorylation in the absence of tau

aggregates can cause a neurodegenerative phenotype

similar to AD [37]. It is also observed that elevated tau

moves into the nucleus, and serves as an apoptotic

substrate of caspase-3 [38]. These observations

suggest that tau phosphorylated at tubulin binding

sites by CaM kinase II dissociates from MTs and

translocates into the nucleus, and that nuclear tau

promotes the apoptosis of tau/P19 cells resembling

those in the AD brain, as shown in Figure 3(B). Our

observations provide new insight into the possible

cause of AD and other neurodegenerative diseases.
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Figure 3. Schematic representation of specific phosphorylation sites of htau441 found in PHF-tau, and involvement of CaM kinase II in

apoptosis of tau/P19 cells. (A), Specific phosphorylation sites of htau441 found in only PHF-tau of the AD brain. Non-fetal-type

phosphorylation sites found in PHF-tau, namely PHF-tau specific phosphorylation sites, are shown, although PHF-tau is also phosphorylated

at the same sites of fetal-type phosphorylation. *, tubulin binding site; P, PHF-tau-specific phosphorylation site; P in circle, phosphorylation

site with CaM kinase II. (B), Involvement of CaM kinase II in apoptosis of tau/P19 cells. In tau/P19 cells, tau was distributed throughout the

cytoplasm and co-localized with microtubules. Some tau dissociated from MTs was phosphorylated by CaM kinase II and/or GSK3, and then

translocated into the nucleus. Nuclear tau may disrupt RA signaling during neural differentiation resulting in apoptosis. Abbreviations; MTs,

microtubules; Mt, mitochondria, Nuc, nuclei; RAR, retinoic acid receptor.
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